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The effects of phase slip due to the thermal creation of vortices in confined
liquid 4He below the l point is discussed. In a narrow tube there is a finite
probability of thermal activation of a vortex in the superfluid helium, with the
vortex not parallel to the axis of the tube. In the presence of a heat flow along
the tube, the vortices experience the Magnus force, which prevents exact can-
cellation of the motion of thermally activated vortices traversing the cross
section of the tube in opposite directions. Each crossing of the tube by a vortex
causes a 2p phase slip of the superfluid order parameter along the tube. A tem-
perature gradient results, which is proportional to the rate of phase slip, thus
yielding a nonvanishing thermal resistivity below the bulk l point. The cal-
culated temperature dependence compares well with experimental data, thereby
providing indirect evidence of the presence of vortices in thermal equilibrium.

KEY WORDS: confined superfluid; helium; phase slip; thermal resistivity;
vortex.

1. INTRODUCTION

Many years ago, in his celebrated studies of the theory of superfluid 4He,
Feynman suggested that the l transition might result from the presence of
vortex loops and rings. These would become more abundant with increasing



temperature, leading to the development of a kind of entangled network
that could destroy the quantum mechanical order. This picture of vortices
being the primary agent, or even sole agent, for the l transition has con-
tinued, through the years, to receive a great deal of attention. On the other
hand, the standard approach to the critical dynamics for a system with a
two-dimensional (i.e., quantum mechanical) order parameter has been
based on fluctuations within the framework of the Ginzburg–Landau free
energy functional. These are generally in the form of plane-wave-like
Fourier components.

The thrust of this paper is to attempt to reconcile the two schools of
thought by demonstrating that, although there can be no question of the
success of the Ginzburg–Landau approach, there is clear experimental
evidence of the presence of an equilibrium ensemble of vortices in the
superfluid state chose to the l point. The evidence comes from a pheno-
menon that is described briefly in a recent publication [1] and reviewed in
Section 2 below. When the superfluid is contained inside a tube of small
diameter, a slight, strongly temperature-dependent residual resistance is
observed just below the bulk l point. This we have been able to attribute to
the motion of vortices across the cross section of the tube. In the present
paper we want to turn the situation around and regard our treatment as
sufficiently reliable that we can use it as a ‘‘diagnostic tool’’ which indicates
to us that there is a population of thermally excited vortices.

The theory of this phenomenon proceeds in two steps. (1) To first
approximation, a barrier to the motion of the vortices is placed at the
saddle-point configuration so as to lead to a ‘‘quasi-equilibrium’’ distribu-
tion which is distorted by the transverse forces that are exerted on the vor-
tices as a consequence of the heat flow. This perturbed distribution on one
side of the barrier is larger than its normal equilibrium value, while on the
other side it is smaller. (2) This asymmetry then serves as a kind of bound-
ary condition near the barrier when the latter is lowered to permit some
vortex motion across it, as described by Kramers’ theory for this kind of
process. The computation leads to a rate of passage over the saddle-point
barrier that is proportional to the equilibrium probability of finding a
thermally excited vortex in the saddle-point configuration. For simplicity,
the effect on this probability of fluctuations in the shape of the vortices,
studied by us to some extent [2], is not dealt with here. One important
detail is worth emphasizing, nevertheless: the probability has the form of a
Boltzmann factor, the exponent of which contains a logarithmic depen-
dence on the temperature. This is a robust and inescapable feature of the
theory, which invites experimental test, doubtless, however, requiring the
sensitivity and precision that can be achieved only in a microgravity envi-
ronment.

1412 Ferrell and Mukhin



2. DISSIPATION AND PHASE SLIP IN CONFINED SUPERFLUID
HELIUM

2.1. When Is a Superfluid Not a Superfluid?

Consider the axial flow of heat in a sample of liquid 4He that is con-
tained in a long right circular cylinder of radius r0, as studied experimen-
tally by Kahn and Ahlers [3] and reviewed recently by Ahlers [4].
Depending upon the value of r0, this lateral confinement has a pronounced
effect on the thermal conductivity, which, in the unconfined bulk fluid,
would diverge at the l point. This divergence is well understood [5] to be
a consequence of the diverging mean lifetime of the longest-wavelength fluc-
tuation modes of the order parameter. Such a critical slowing-down is char-
acteristic of a second-order phase transition and is related in turn to the
divergence at the critical point of t, the correlation length. The confinement
that is under consideration here serves to interrupt this familiar critical
behavior of t once it has grown to be comparable to r0. The effect on the
thermal conductivity in the vicinity of the bulk l point, as well as below it to
some extent, has been studied by Hausmann [6]. The work that we report
here applies to temperatures further below t, where t shrinks to values much
smaller than r0. Although the 4He is then in a state of broken symmetry, has
developed a well-defined order parameter, and has become almost perfectly
superfluid, the thermal resistance does not, in fact, drop to zero. This follows
from the normal-fluid viscosity mn and from the ‘‘sticking’’ boundary condi-
tion at the inner surface of the confining cylinder that is imposed on vn, the
axial component of the velocity of the normal fluid. The Poiseuille velocity
profile for vn,corresponding to the vanishing of vn at the boundary, implies a
pressure gradient proportional to the mean value of vn and, thus, propor-
tional to the heat current. In steady state there is no acceleration of the
superfluid and the fountain-effect relationship applies, yielding

NT=
1
ns

NP (1)

where n and s are the atomic density and the entropy per 4He atom,
respectively. Because these parameters, as well as mn, do not exhibit any
pronounced critical variation, Eq. (1) contributes a noncritical background
resistivity, as mentioned by Ahlers [4] and also discussed elsewhere [7, 8].

2.2. Vortices

The noncritical background thermal resistivity expressed by Eq. (1)
depends upon the above assertion of a well-defined order parameter and
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tacitly ignores any fluctuations in the order parameter. For t° r0, these
are obviously quite localized and can be expected to appear and promptly
disappear, causing no long-term effect on the steady-state behavior of the
order parameter. Thermally excited vortices, on the other hand, can have
a quite different effect. These topological singularities have an intrinsic
stability in their lateral structure (i.e., transverse to the vortex core) and can
grow or disappear only by changes in their length. To the extent that they
can be as long as 2r0, thus spanning across a diameter of the tube in a
saddle-point configuration [8], they can migrate across the tube and, with
each such event, produce a phase change in the order parameter of 2p. In
thermal equilibrium, we can anticipate that such migrations will occur with
equal probability in opposing directions so that no net superfluid accelera-
tion is required for maintaining steady state flow, thus leaving Eq. (1) as
the sole origin of the temperature gradient. The cancellation is, however,
no longer complete when the system is perturbed by the normal fluid
flowing past the vortices. The computation of this nonequilibrium effect
that we carry out in the following sections depends in an important and
essential way on the equilibrium probability of a saddle-point vortex. We
denote this req(0) and proceed now to examine it in detail.

The superfluid velocity encircling a quantized vortex has the space
dependence,

vs 3 r −1 (2)

where r is the distance from the center of the vortex core. The kinetic
energy density is consequently of the form

rs

2
v2s 3

rs

2
1
r2

(3)

rs being the superfluid density. An integration with upper and lower
cutoffs at the cylinder radius and at the correlation length, respectively,
yields, for a vortex length equal to the full diameter,

G0 3 2r0 F
rs

2
d2r
r2

3 r0rs ln
r0
t

(4)

(More careful attention to these cutoffs will be provided elsewhere [7].)
We need the Clow–Reppy critical temperature dependence,

rs/rs=2.4 |t|v=2.4t0/t (5)
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in terms of t, with t0=0.7 Å, and we take further numerical factors from
the detailed work of Rayfield and Reis [9]. We consequently obtain, for
the Gibbs free energy of a saddle-point vortex divided by the temperature
(in units of energy),

W=
G0
T
=0.6

r0
t

ln
r0
t
=0.6X ln X (6)

where

X — r0/t (7)

The intrinsic probability is, therefore, given by the Boltzmann factor,

req(0)=exp(−W) (8)

2.3. Quasi-Equilibrium

The heat current density is proportional to the local axial normal fluid
velocity, according to

Q=Trsnvn 5 Tlrsnvn (9)

where, close to the l point, the temperature, entropy, and mass density can
be approximated by their l-point values. Having only heat flow and no
mass flow requires a counterflow of the superfluid at velocity vs according
to

rsvs=rn v̄n (10)

with the overbar indicating the cross-sectional average. From Eq. (5) this
becomes

vs=
rn

rs
v̄n 5

r

rs
v̄n=

t

2.4t0
v̄n (11)

In terms of the distribution of the 4He atoms in momentum space, this
displaces the d function (representing the discrete contribution of the order
parameter) away from the origin by

mvs
h

=
mt
ht0

vn 3 t Q (12)
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where m and 2ph are the 4He mass and Planck’s constant, respectively. As
the l point is approached from below for fixed Q, Eq. (12) signifies that the
displacement will increase until it becomes comparable to t−1, the breadth
of the fluctuation cloud surrounding the d function. This will lead to a
departure from nonlinearity. The limiting criterion for linearity thus
becomes the scaling relation,

Q [ Qnonlin 3 t
−23 t2v (13)

for a given temperature. For a given heat current, Q, this relates to

|t| \ |t|min 3 Q1/2v (14)

Equation (14) also applies for t > 0, with a somewhat similar theoretical
basis [10, 11]. In the present context, the counterflow can be expected to
generate additional vortices [12] that are not taken into account by our
theory. The actual experimental upper bound on Q for linear heat flow
may, therefore, be smaller than Qnonlin in Eq. (13).

An essential assumption in our treatment of the movement of the vor-
tices is that the inner wall of the confining cylinder is sufficiently smooth
on the mesoscopic scale of t± t0 that there is no pinning of the vortices to
the walls. We, thus, arrive at the picture of the vortices being carried along
with the superfluid, with the normal fluid passing by them at relative
velocity vs+vn or simply vs (because vn ° vs). Let l(x) be the half-length of
a ‘‘minimal’’ vortex, i.e., one in the shape of an arc of a circle, lying in a
plane perpendicular to the axis of the cylinder, with both ends normal to
the cylinder wall. The coordinate x is the distance from the arc center
to the cylinder axis, so that x=0 specifies the saddle point configuration,
with l(0)=r0. In the absence of heat flow we would have the equilibrium
probability,

req(x)=exp[−l(x) W/r0] (15)

reducing to Eq. (8) for x=0.
For the purposes of this calculation, we can treat F, the Magnus force

per unit length of the normal fluid acting on a vortex, as a conservative
force described by the potential energy,

VM(x)=−FA(x) (16)

with A(x) being (p/2) r20 minus the area enclosed by the arc. In other
words, A(x) is the area lying between the arc and a diameter; thus, A(x)
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vanishes for x=0 and is equal to 2r0x for |x|° r0. It is evident that our
choice of sign for x is such that the Magnus force in Eq. (16) will tend to
cause the vortices to move in the direction of increasing x. It is convenient,
however, to imagine a model in which the vortices are not free to move.
A quasi-equilibrium would then be developed, of modified probability

rq-eq(x)=exp[−l(x) W/r0+A(x) F/T] 5 51+A(x)
F
T
6 req(x)

=req(x)+Dreq(x) (17)

The perturbation caused by the Magnus force is, thus, to first order
in F,

Dreq(x)=A(x)
F
T
req(x) (18)

Of special interest will be the asymmetry introduced for the very short
vortices close to the cylinder wall, of l° r0 and |x| 5 r0, for which

Dreq(±r0)=±
pr20
T

Freq(±r0) (19)

and

Dreq(r0)−Dreq(−r0)=±
pr20
T

Freq(±r0) (20)

[because req(r0)=req(−r0), by definition].

2.4. Saddle-Point Passage

Returning to Eq. (17) and substituting l(x)=(r20−x2)1/2=r0−x2/
(2r0)+· · · , we see that near the saddle point

rq-eq(x) 5 rq-eq(0) exp[x2/x20] (21)

with a characteristic length defined by

x0=`2 r0W −1/2 (22)
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Aided by the work on phase slip in superconductors of McCumber and
Halperin [13] and of Ambegaokar and Halperin [14] as well as by that of
Langer [15] on nucleation, we apply the method of Kramers [16] by
taking rq-eq(x) as a jumping-off point. Allowing the vortices now to drift,
we obtain the probability distribution for the nonequilibrium system as

rnoneq(x)=rq-eq(x)+Drq-eq(x) (23)

where the additional perturbation from the transport properties has an
asymmetric form,

Drq-eq(x)=f(x) rq-eq(x) (24)

An exact solution for f(x) from the Kramers transport equation by the
method of ‘‘variation of constants’’ is readily obtained [7] in the form of
the error function. It suffices here, however, to adopt a slightly less quanti-
tative and more heuristic approach by limiting ourselves to the asymptotic
behavior,

f(x)||x|± x0=fasymp(x)=−f0 sgn(x) (25)

This sets in as soon as the vortex is farther from the saddle point than the
characteristic distance x0. This parameter is a measure of the sharpness of
the saddle point and determines the steepness of the descent down into the
valleys on either side. The connection of the probability current for the
steady-state drift, J, to the constant f0 is determined by the diffusion coef-
ficient, D, and is most easily evaluated at the minimum of rq-eq(x). Thus,
from Eqs. (23) and (24),

J=−D
drnoneq(x)
dx

=−D
dDrq-eq(x)
dx

=−Drq-eq(x)
df
dx

(26)

Because f changes to its full asymptotic value in an interval of size x0, we
have

J=D
f0
x0
rq-eq(0) (27)

up to a numerical factor of 0(1).
It remains to fix f0 by means of an appropriate boundary condition.

The final solution to the transport problem is the perturbed probability
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distribution function, rq-eq(x). Returning to Eqs. (23) and (24) and substi-
tuting Eq. (17) yields

rnoneq(x)=[1+f(x)] rq-eq(x) 5 [1+f(x)]51+A(x)
F
T
6 req(x)

5 51+f(x)+A(x)
F
T
6 req(x) (28)

to first order. For the required boundary condition we adopt

rnoneq(±r0)=req(±r0) (29)

which expresses the idea that the Magnus force perturbs the distribution
inside the cylinder but not at its walls. We assume that at the walls the
usual relaxation processes are strong enough to maintain unperturbed
equilibrium. This boundary condition requires that the two first-order terms
in Eq. (28) cancel, yielding

f(±r0)=−
F
T
A(±r0)= +

p

2
Fr20
T

(30)

which, by substitution from Eq. (25), becomes

f0=
p

2
Fr20
T

(31)

In substituting Eq. (31) into Eq. (27), it is usual to recall the Einstein fluc-
tuation-dissipation theorem: m=D/T, which expresses m, the mobility of
a vortex, in terms of its diffusion coefficient. By substitution from
Eq. (22) and by the introduction of Ftot=2r0F for the Magnus force acting
on a saddle-point vortex, Eq. (27) becomes

J=W1/2mFtotreq(0) (32)

again with the neglect of numerical factors of 0(1). Aside from the tempera-
ture dependent dimensionless factor W1/2, this result has the simple physical
interpretation of vortices being dragged across the saddle point at rate mFtot.

3. SUMMARY

In this paper we have presented a theory which provides a ‘‘diagnostic
tool’’ that indicates the existence of a population of thermally excited vor-
tices in confined liquid 4He below the l point. Serving as a fingerprint of
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the presence of this population of vortices is our predicted temperature
dependence of the thermal resistivity in the tube filled with liquid 4He. This
dependence is expected to have the form of a Boltzmann factor, the expo-
nent of which logarithmically depends on the temperature. A direct exper-
imental test of this theoretical prediction should be possible, although it
would seem to require the sensitivity and precision that can be achieved
only in a microgravity environment.
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